Rabu, 19 November 2014

Set instruksi

Set Instruksi

Set instruksi (instruction set) adalah sekumpulan lengkap instruksi yang dapat di mengerti oleh sebuah CPU, set instruksi sering juga disebut sebagai bahasa mesin (machine code), karna aslinya juga berbentuk biner kemudian dimengerti sebagai bahasa assembly, untuk konsumsi manusia (programmer), biasanya digunakan representasi yang lebih mudah dimengerti oleh manusia.
Sebuah instruksi terdiri dari sebuah opcode, biasanya bersama dengan beberapa informasi tambahan seperti darimana asal operand-operand dan kemana hasil-hasil akan ditempatkan. Subyek umum untuk menspesifikasikan di mana operand-operand berada (yaitu, alamat-alamatnya) disebut pengalamatan
Pada beberapa mesin, semua instruksi memiliki panjang yang sama, pada mesin-mesin yang lain mungkin terdapat banyak panjang berbeda. Instruksi-instruksi mungkin lebih pendek dari, memiliki panjang yang sama seperti, atau lebih panjang dari panjang word. Membuat semua instruksi memiliki panjang yang sama lebih muda dilakukan dan membuat pengkodean lebih mudah tetapi sering memboroskan ruang, karena semua instruksi dengan demikian harus sama panjang seperti instruksi yang paling panjang.
Di dalam sebuah instruksi terdapat beberapa elemen-elemen instruksi:
1. Operation code (op code)
2. Source operand reference
3. Result operand reference
4. Xext instruction preference
Format instruksi (biner):
Missal instruksi dengan 2 alamat operand : ADD A,B A dan B adalah suatu alamat register.
Beberapa simbolik instruksi:
ADD : Add (jumlahkan)
SUB : Subtract (Kurangkan)
MPY/MUL : Multiply (Kalikan)
DIV : Divide (Bagi)
LOAD : Load data dari register/memory
STOR : Simpan data ke register/memory
MOVE : pindahkan data dari satu tempat ke tempat lain
SHR : shift kanan data
SHL : shift kiri data .dan lain-lain
Cakupan jenis instruksi:
Data processing : Aritmetik (ADD, SUB, dsb); Logic (AND, OR, NOT, SHR, dsb); konversidata
Data storage (memory) : Transfer data (STOR, LOAD, MOVE, dsb)
Data movement : Input dan Output ke modul I/O
Program flow control : JUMP, HALT, dsb.
Bentuk instruksi:
- Format instruksi 3 alamat
Mempunyai bentuk umum seperti : [OPCODE][AH],[AO1],[AO2]. Terdiri dari satu alamt hasil, dan dua alamat operand, misal SUB Y,A,B Yang mempunyai arti dalam bentuk algoritmik : Y := A – B dan arti dalam bentuk penjelasan : kurangkan isi reg a dengan isi reg B, kemudian simpan hasilnya di reg Y. bentuk bentuk pada format ini tidak umum digunakan di dalam computer, tetapi tidak dimungkinkan ada pengunaanya, dalam peongoprasianya banyak register sekaligus dan program lebih pendek.
Contoh:
A, B, C, D, E, T, Y adalah register
Program: Y = (A – B) / ( C + D × E)
SUB Y, A, B Y := A – B
MPY T, D, E T := D × E
ADD T, T, C T := T + C
DIV Y, Y, T Y:= Y / T
Memerlukan 4 operasi
- Format instruksi 2 alamat
Mempunyai bentuk umum : [OPCODE][AH],[AO]. Terdiri dari satu alamat hasil merangkap operand, satu alamat operand, missal : SUB Y,B yang mempunyai arti dalam algoritmik : Y:= Y – B dan arti dalam bentuk penjelasan : kurangkan isi reg Y dengan isi reg B, kemudian simpan hasillnya di reg Y. bentuk bentuk format ini masih digunakan di computer sekarang, untuk mengoprasikan lebih sedikit register, tapi panjang program tidak bertambah terlalu banyak.
Contoh :
A, B, C, D, E, T, Y adalah register
Program: Y = (A – B) / ( C + D × E)
MOVE Y, A Y := A
SUB Y, B Y := Y – B
MOVE T, D T := D
MPY T, E T := T × E
ADD T, C T := T + C
DIV Y, T Y:= Y / T
Memerlukan 6 operasi
- Format instruksi 1 alamat
Mempunyai bentuk umum : [OPCODE][AO]. Terdiri dari satu alamat operand, hasil disimpan di accumulator, missal : SUB B yang mempunyai arti dalam algoritmik : AC:= AC – B dan arti dalam bentuk penjelasan : kurangkan isi Acc dengan isi reg B, kemudian simpan hasillnya di reg Acc. bentuk bentuk format ini masih digunakan di computer jaman dahulu, untuk mengoprasikan di perlukan satu register, tapi panjang program semakin bertambah.
Contoh :
A, B, C, D, E, Y adalah register
Program: Y = (A – B) / ( C + D × E)
LOAD D AC := D
MPY E AC := AC × E
ADD C AC := AC + C
STOR Y Y := AC
LOAD A AC := A
SUB B AC := AC – B
DIV Y AC := AC / Y
STOR Y Y := AC
Memerlukan 8 operasi
- Format instruksi 0 alamat
Mempunyai bentuk umum : [OPCODE]. Terdiri dari semua alamat operand implicit, disimpan dalam bentuk stack. Operasi yang biasanya membutuhkan 2 operand, akan mengambil isi stack paling atas dan dibawahnya missal : SUB yang mempunyai arti dalam algoritmik : S[top]:=S[top-1]-S[top] dan arti dalam bentuk penjelasan : kurangkan isi stack no2 dari atas dengan isi stack paling atas, kemudian simpan hasilnya di stack paling atas, untuk mengoprasikan ada beberapa instruksi khusus stack PUSH dan POP.
Contoh :
A, B, C, D, E, Y adalah register
Program: Y = (A – B) / ( C + D × E)
PUSH A S[top] := A
PUSH B S[top] := B
SUB S[top] := A – B
PUSH C S[top] := C
PUSH D S[top] := D
PUSH E S[top] := E
MPY S[top] := D × E
ADD S[top] := C + S[top]
DIV S[top] := (A – B) /S[top]
POP Y Out := S[top]
Memerlukan 10 operasi
Set instruksi pada CISC:
Berikut ini merupakan karakteristik set instruksi yang digunakan pada beberapa computer yang memiliki arsitektur CISC
Perbandingan set instruksi
Beberapa computer CISC (Complex Instruction Set Computer) menggunakan cara implist dalam menentukan mode addressing pada setiap set instruksinya. Penentuan mode addressing dengan cara implicit memiliki arti bahwa pada set instruksi tidak di ada bagian yang menyatakan tipe dari mode addressing yang digunakan, deklarasi dari mode addressing itu berada menyatu dengan opcode. Lain hal nya dengan cara imsplisit, cara eksplisit sengaja menyediakan tempat pada set instruksi untuk mendeklarasikan tipe mode addressing. Pada cara eksplisit deklarasi opcode dan mode addressing berada terpisah.
Data pada tempat deklarasi mode addressing diperoleh dari logaritma basis dua jumlah mode addressing. Jika deklarasi mode addressing dilakukan secara implicit akan menghemat tempat dalam set instruksi paling tidak satu bit untuk IBM 3090 dan 6 bit untuk MC68040. Perubahan satu bit pada set instruksi akan memberikan jangkauan alamat memori lebih luas mengingat range memori dinyatakan oleh bilangan berpangkat dua.
ELEMEN-ELEMEN DARI INSTRUKSI MESIN (SET INSTRUKSI)
* Operation Code (opcode) : menentukan operasi yang akan dilaksanakan
* Source Operand Reference : merupakan input bagi operasi yang akan dilaksanakan
* Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan
* Next instruction Reference : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya setelah instruksi yang dijalankan selesai. Source dan result operands dapat berupa salah satu diantara tiga jenis berikut ini:
§ Main or Virtual Memory
§ CPU Register
§ I/O Device
DESAIN SET INSTRUKSI
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah:
1. Kelengkapan set instruksi
2. Ortogonalitas (sifat independensi instruksi)
3. Kompatibilitas : – Source code compatibility – Object code Compatibility
Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut:
1. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit operasinya
2. Data Types: tipe/jenis data yang dapat olah Instruction Format: panjangnya, banyaknya alamat, dsb.
3. Register: Banyaknya register yang dapat digunakan 4.Addressing: Mode pengalamatan untuk operand
FORMAT INSTRUKSI 
* Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format).
OPCODE OPERAND REFERENCE OPERAND REFERENCE JENIS-JENIS OPERAND 
* Addresses (akan dibahas pada addressing modes)
* Numbers : – Integer or fixed point – Floating point – Decimal (BCD)
* Characters : – ASCII – EBCDIC
* Logical Data : Bila data berbentuk binary: 0 dan 1
JENIS INSTRUKSI 
* Data processing: Arithmetic dan Logic Instructions
* Data storage: Memory instructions
* Data Movement: I/O instructions
* Control: Test and branch instructions
TRANSFER DATA 
* Menetapkan lokasi operand sumber dan operand tujuan.
* Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas daripada stack.
* Menetapkan panjang data yang dipindahkan.
* Menetapkan mode pengalamatan.
* Tindakan CPU untuk melakukan transfer data adalah :
a. Memindahkan data dari satu lokasi ke lokasi lain.
b. Apabila memori dilibatkan :
1. Menetapkan alamat memori.
2. Menjalankan transformasi alamat memori virtual ke alamat memori aktual.
3. Mengawali pembacaan / penulisan memori
Operasi set instruksi untuk transfer data :
* MOVE : memindahkan word atau blok dari sumber ke tujuan
* STORE : memindahkan word dari prosesor ke memori.
* LOAD : memindahkan word dari memori ke prosesor.
* EXCHANGE : menukar isi sumber ke tujuan.
* CLEAR / RESET : memindahkan word 0 ke tujuan.
* SET : memindahkan word 1 ke tujuan.
* PUSH : memindahkan word dari sumber ke bagian paling atas stack.
* POP : memindahkan word dari bagian paling atas sumber
ARITHMETIC
Tindakan CPU untuk melakukan operasi arithmetic :
1. Transfer data sebelum atau sesudah.
2. Melakukan fungsi dalam ALU.
3. Menset kode-kode kondisi dan flag.
Operasi set instruksi untuk arithmetic :
1. ADD : penjumlahan 5. ABSOLUTE
2. SUBTRACT : pengurangan 6. NEGATIVE
3. MULTIPLY : perkalian 7. DECREMENT
4. DIVIDE : pembagian 8. INCREMENT
Nomor 5 sampai 8 merupakan instruksi operand tunggal. LOGICAL
* Tindakan CPU sama dengan arithmetic
* Operasi set instruksi untuk operasi logical :
1. AND, OR, NOT, EXOR
2. COMPARE : melakukan perbandingan logika.
3. TEST : menguji kondisi tertentu.
4. SHIFT : operand menggeser ke kiri atau kanan menyebabkan konstanta pada ujung bit.
5. ROTATE : operand menggeser ke kiri atau ke kanan dengan ujung yang terjalin.
CONVERSI
Tindakan CPU sama dengan arithmetic dan logical.
* Instruksi yang mengubah format instruksi yang beroperasi terhadap format data.
* Misalnya pengubahan bilangan desimal menjadi bilangan biner.
* Operasi set instruksi untuk conversi :
1. TRANSLATE : menterjemahkan nilai-nilai dalam suatu bagian memori berdasrkan tabel korespodensi.
2. CONVERT : mengkonversi isi suatu word dari suatu bentuk ke bentuk lainnya.
INPUT / OUPUT 
* Tindakan CPU untuk melakukan INPUT /OUTPUT :
1. Apabila memory mapped I/O maka menentukan alamat memory mapped.
2. Mengawali perintah ke modul I/O
* Operasi set instruksi Input / Ouput :
1. INPUT : memindahkan data dari pernagkat I/O tertentu ke tujuan
2. OUTPUT : memindahkan data dari sumber tertentu ke perangkat I/O
3. START I/O : memindahkan instruksi ke prosesor I/O untuk mengawali operasi I/O
4. TEST I/O : memindahkan informasi dari sistem I/O ke tujuan TRANSFER CONTROL
* Tindakan CPU untuk transfer control : Mengupdate program counter untuk subrutin , call / return.
* Operasi set instruksi untuk transfer control :
1. JUMP (cabang) : pemindahan tidak bersyarat dan memuat PC dengan alamat tertentu.
2. JUMP BERSYARAT : menguji persyaratan tertentu dan memuat PC dengan alamat tertentu atau tidak melakukan apa tergantung dari persyaratan.
3. JUMP SUBRUTIN : melompat ke alamat tertentu.
4. RETURN : mengganti isi PC dan register lainnya yang berasal dari lokasi tertentu.
5. EXECUTE : mengambil operand dari lokasi tertentu dan mengeksekusi sebagai instruksi
6. SKIP : menambah PC sehingga melompati instruksi berikutnya.
7. SKIP BERSYARAT : melompat atau tidak melakukan apa-apa berdasarkan pada persyaratan
8. HALT : menghentikan eksekusi program.
9. WAIT (HOLD) : melanjutkan eksekusi pada saat persyaratan dipenuhi
10. NO OPERATION : tidak ada operasi yang dilakukan.
CONTROL SYSTEM 
* Hanya dapat dieksekusi ketika prosesor berada dalam keadaan khusus tertentu atau sedang mengeksekusi suatu program yang berada dalam area khusus, biasanya digunakan dalam sistem operasi. * Contoh : membaca atau mengubah register kontrol.
JUMLAH ALAMAT (NUMBER OF ADDRESSES) 
* Salah satu cara tradisional untuk menggambarkan arsitektur prosessor adalah dengan melihat jumlah alamat yang terkandung dalam setiap instruksinya.
* Jumlah alamat maksimum yang mungkin diperlukan dalam sebuah instruksi :
1. Empat Alamat ( dua operand, satu hasil, satu untuk alamat instruksi berikutnya)
2. Tiga Alamat (dua operand, satu hasil)
3. Dua Alamat (satu operand merangkap hasil, satunya lagi operand)
4. Satu Alamat (menggunakan accumulator untuk menyimpan operand dan hasilnya)
Macam-macam instruksi menurut jumlah operasi yang dispesifikasikan
1. O – Address Instruction
2. 1 – Addreess Instruction.
3. N – Address Instruction
4. M + N – Address Instruction
Macam-macam instruksi menurut sifat akses terhadap memori atau register
1. Memori To Register Instruction
2. Memori To Memori Instruction
3. Register To Register Instruction
ADDRESSING MODES
Jenis-jenis addressing modes (Teknik Pengalamatan) yang paling umum:
* Immediate
* Direct
* Indirect
* Register
* Register Indirect
* Displacement
* Stack
Sumber :

Minggu, 09 November 2014

Struktur Dasar Komputer & organisasi computer




Struktur Dasar Komputer & organisasi computer

Suatu sistem komputer terdiri dari lima unit struktur dasar, yaitu:
Unit masukan (Input Unit)
Unit kontrol (Control Unit)
Unit logika dan aritmatika (Arithmetic & Logical Unit / ALU)
Unit memori/penyimpanan (Memory / Storage Unit)
Unit keluaran (Output Unit)
Control Unit dan ALU membentuk suatu unit tersendiri yang disebutCentral Processing Unit (CPU).

Fungsi Utama dari masing-masing Unit akan dijelaskan berikut ini:
Unit Masukan (Input Unit)
Berfungsi untuk menerima masukan (input) kemudian membacanya dan diteruskan ke Memory / penyimpanan. Dalam hubungan ini dikenal istilah peralatan masukan (input device) yaitu alat penerima dan pembaca masukan serta media masukan yaitu perantaranya.
Unit Kontrol (Control Unit)
Berfungsi untuk melaksanakan tugas pengawasan dan pengendalian seluruh sistem komputer. Ia berfungsi seperti pengatur rumah tangga komputer, memutuskan urutan operasi untuk seluruh sistem, membangkitkan dan mengendalikan sinyal-sinyal kontrol untuk menyesuaikan operasi-operasi dan arus data dari bus alamat (address bus) dan bus data (data bus), serta mengendalikan dan menafsirkan sinyal-sinyal kontrol pada bus kontrol (control bus) dari sistem komputer. Pengertian mengenai bus dapat dilihat di bagian bawah halaman ini.
Unit Logika & Aritmatika (Arithmetical & Logical Unit)
Berfungsi untuk melaksanakan pekerjaan perhitungan atau aritmatika & logika seperti menambah, mengurangi, mengalikan, membagi dan memangkatkan. Selain itu juga melaksanakan pekerjaan seperti pemindahan data, penyatuan data, pemilihan data, membandingkan data, dll, sehingga ALU merupakan bagian inti dari suatu sistem komputer. Pada beberapa sistem komputer untuk memperingan dan membantu tugas ALU dari CPU ini diberi suatu peralatan tambahan yang disebut coprocessor sehingga khususnya proses perhitungan serta pelaksanaan pekerjaan pada umumnya menjadi lebih cepat. Pengertian mengenaicoprocessor dapat dilihat di bagian bawah halaman ini.
Unit Memori / Penyimpan (Memory / Storage unit)
Berfungsi untuk menampung data/program yang diterima dari unit masukan sebelum diolah oleh CPU dan juga menerima data setelah diolah oleh CPU yang selanjutnya diteruskan ke unit keluaran. Pada suatu sistem komputer terdapat dua macam memori, yang penamaannya tergantung pada apakah alat tersebut hanya dapat membaca atau dapat membaca dan menulis padanya. Bagian memori yang hanya dapat membaca tanpa bisa menulis padanya disebut ROM (Read Only Memory), sedangkan bagian memori yang dapat melaksanakan membaca dan menulis disebut RAM (Random Access Memory).
Unit Keluaran (Output Unit)
Berfungsi untuk menerima hasil pengolahan data dari CPU melalui memori. Seperti halnya pada unit masukan maka pada unit keluaran dikenal juga istilah peralatan keluaran (Output device) dan media keluaran (Output media)

Organisasi Komputer
Organisasi komputer adalah bagian yang terkait erat dengan unit – unit operasional dan interkoneksi antar komponen penyusun sistem komputer dalam merealisasikan aspek arsitekturalnya. Biasanya mempelajari bagian yang terkait dengan unit-unit operasional komputer dan hubungan antara komponen-komponen sister komputer.
Contoh aspek organisasional adalah teknologi hardware, perangkat antarmuka, teknologi memori, dan sinyal – sinyal kontrol.Arsitektur komputer lebih cenderung pada kajian atribut – atribut sistem komputer yang terkait dengan seorang programmer. Contohnya, set instruksi, aritmetika yang digunakan, teknik pengalamatan, mekanisme I/O.

Sebagai contoh apakah suatu komputer perlu memiliki instruksi pengalamatan pada memori merupakan masalah rancangan arsitektural. Apakah instruksi pengalamatan tersebut akan diimplementasikan secara langsung ataukah melalui mekanisme cache adalah kajian organisasional.
Jika organisasi komputer mempelajari bagian yang terkait dengan unit-unit operasional komputer dan hubungan antara komponen sistem computer,dan interkoneksinya yang merealisasikan spesifikasi arsitektural contoh: teknologi hardware, perangkat antarmuka (interface), teknologi memori, sistem memori, dan sinyal–sinyal kontrol.
Sumber [http://faridadi91.blogspot.com/2012/10/perbedaan-arsitektur-dan-organisasi.html]
[http://akmal-vhatal.blogspot.com/2012/01/struktur-dasar-komputer.html]













Arsitektur komputer


Arsitektur Komputer

        Arsitektur Komputer adalah sebuah ilmu untuk tujuan perancangan sintem kompter. Tujuan seorang arsitek komputer adalah merancang sebuah sistem dengan kinerja yang tinggi dengan biaya yang layak, memenuhi persyaratan-persyaratan lainnya. “Arsitektur Komputer” memberikan berbagai atribut pada sistem komputer yang dibutuhkan oleh seorang perancang software sistem untuk mengembangkan suatu progaram. Model konseptual arsitektur komputer memeberikan informasi sebagai berikut.

  1. Set instruksi
  2. Format instruksi
  3. Kode operasi
  4. Jenis-jenis operand
  5. Mode-mode pengalamatan operand
  6. Register
  7. Main memory space utilization (memory map)
  8. Alokasi ruang I/O (I/O map)
  9. Pengerjaan/penetapan interupsi dan prioritas
  10. Pengerjaan kanal-kanal DMA dan prioritas
  11. Teknik-teknik I/O yang digunakan berbagai perangkat
  12. Format-format perintah pengontrol I/O
  13. Format-format status pengontrol I/O

      Organisasi komputer memberikan gambar yang lebih dalam mengenai struktur fungsional dan interkoneksi logika antara unit-unit (blok fungsional). Biasanya termasuk rincian atau detail hardware yang dapat diketahui oleh pemrogram, seperti sinyal-sinyal kontrol, antar muka komputer dan peripheral serta teknologi memori yang digunakan.

Sumber [http://ekofitriyanto.wordpress.com/2013/10/24/pengertian-dan-perbedaan-organisasi-komputer-dengan-arsitektur-komputer/]

Jumat, 11 April 2014

PENGEPAKAN BAUT DENGAN MENGGUNAKAN ALOGARITMA FLOWCHART UNTUK MENGENDALIKAN MOTOR CONVEYOR

PENGEPAKAN BAUT DENGAN MENGGUNAKAN
ALOGARITMA FLOWCHART
UNTUK MENGENDALIKAN MOTOR CONVEYOR



Cara kerja:
1.       Program di jalankan/start
2.       Memasukan inputan baut 1 buah
3.       Penandaan dengan nama baut
4.       Membandingkan baut, apabila baut ada 2 kondisi
·         Baut <= 15 maka program “ya” , berarti program akan terus melooping sampai 15 atau keadaan pembanding selesai
·         Jika baut sudah berisikan 15 maka program “tidak” , berarti program melanjutkan keperintah berikutnya
5.       Setelah itu motor berputar menjalankan conveyor ke pengepakan barang
6.       Sudah sampai ke pengepakan barang maka program kembali membandingkan lagi untuk pengepakannya.
7.       Di pembandingan yang ke 2 itu memiliki 2 kondisi juga
·         Pengepakan <= 5 maka program “ya”, akan menginputkan kembali 1 buah baut dari inputan awal.
·         Jika pengepakan sudah 5 kali maka program tidak dan program selesai sampai dijalankan secara manual lagi.
8.       End/selesai, barang siap di kirim ke suplayer.

Kamis, 20 Maret 2014

pengenalan gardu induk beserta flowchart



PENGENALAN GARDU INDUK

Gardu Induk  adalah  suatu  instalasi  yang  terdiri  dari peralatan listrik tegangan tinggi yang berfungsi untuk mentransfer tenaga listrik dari tegangan yang Berbeda ,  pengukuran,  pengawasan,  pengamanan sistem  tenaga  listrik  serta  pengaturan  daya.
~        Gardu Induk merupakan sub sistem dari sistem penyaluran (transmisi) tenaga listrik, atau merupakan satu kesatuan dari sistem penyaluran (transmisi).
~        Penyaluran (transmisi) merupakan sub sistem dari sistem tenaga listrik.
~        Berarti, gardu induk  merupakan sub-sub sistem dari sistem tenaga listrik.
~        Sebagai sub sistem dari sistem penyaluran (transmisi), gardu induk mempunyai peranan penting, dalam pengoperasiannya tidak dapat dipisahkan dari sistem penyaluran (transmisi) secara keseluruhan.
      Dalam pembahasan ini difokuskan pada masalah gardu induk yang pada umumnya terpasang di Indonesia, pembahasannya bersifat praktis (terapan) sesuai konsttruksi yang terpasang di lapangan.
Mentransformasikan daya listrik :
~       Dari tegangan ekstra tinggi ke tegangan tinggi (500 KV/150 KV).
~       Dari tegangan tinggi ke tegangan yang lebih rendah (150 KV/ 70 KV).
~       Dari tegangan  tinggi ke tegangan menengah (150 KV/ 20 KV, 70 KV/20 KV).
~       Dengan frequensi tetap (di Indonesia 50 Hertz).
~        Untuk pengukuran, pengawasan operasi serta pengamanan dari sistem     tenaga listrik.
Pengaturan pelayanan beban ke gardu induk-gardu induk lain melalui             tegangan tinggi dan ke gardu distribusi-gardu distribusi, setelah melalui proses penurunan tegangan melalui penyulang-penyulang   (feeder-      feeder) tegangan menengah yang ada di gardu induk.
~        Untuk sarana  telekomunikasi (pada umumnya untuk internal PLN),            yang     kita    kenal dengan istilah SCADA.

       PERMASALAHAN
Ketika kejadian seperti ini, dalam skala pengotor yang fix yang masih kecil akan menimbulkan korona pada daerah tersebut di luar selubung SF6. Namun ketika pengotor fix tersebut sudah mencapai dimana keadaan tembus tegangan terpenuhi, maka breakdown pada internal isolasi SF6 tak terelakan.
Tembus tegangan ini akan menimbulkan busur api yang hebat mengingat jaringan yang terpasang saat itu adalah 500 kV (Tergolong Tegangan Ekstra Tinggi). Karena Bushing trafo kontak langsung dengan salauran transmisi SF6 maka isolator-isolator pada bushing rusak sehingga busur api makin merajalela memasuki isolasi minyak dari trafo.

 CARA PENCEGAHAN KORONA
Filter dapat  menyaring udara bebas dari luar yang akan masuk ke dalam agar selalu dalam keadaan bersih. Dengan adanya filter maka partikel garam yang berasal dari air laut dan terbang bersama angin dapat ditangkap oleh filter udara. Sehingga partikel garam tersebut tidak menempel pada bushing transformator yang dapat menyebabkan korona.
 Alat – alat yang di gunakan dalam perancangan :
1. Filter Udara , sebagai penyaring partikel- partikel garam dan debu.
2. kompressor, sebagai pembersih filter dengan memberikan tekanan udara pada filter

FLOW CHART

http://tprasetio.blogspot.com/2012/03/pengenalan-gardu-induk-dan-flowchart.html